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When our measurement instruments sample from only a subspace of the domain that we 
are seeking to understand, or when they sample with uneven sampling density from the 
target domain, the resulting data will be affected by a selection effect. If we ignore such 
selection effects, our conclusions may suffer from selection biases. A classic example of 
this kind of bias is the election poll taken by the Literary Digest in 1936. On the basis of a 
large survey, the Digest predicted that Alf Langdon, the Republican presidential 
candidate, would win by a large margin. But the actual election resulted in a landslide for 
the incumbent, Franklin D. Roosevelt. How could such a large sample size produce such 
a wayward prediction? The Digest, it turned out, had harvested the addresses for its 
survey mainly from telephone books and motor vehicle registries. This introduced a 
strong selection bias. The poor of the depression era – a group that disproportionally 
supported Roosevelt – often did not have phones or cars. 
 The Literary Digest suffered a major reputation loss and soon went out of 
business. It was superseded by a new generation of pollsters, including George Gallup, 
who not only got the 1936 election right but also managed to predict what the Digest’s 
prediction would be to within 1%, using a sample size that was only one thousandth as 
large. The key to his success lay in his accounting for known selection effects. Statistical 
techniques are now routinely used to correct for many kinds of selection bias. 
 Observation selection effects are an especially subtle kind of selection effect that 
is introduced not by limitations in our measurement apparatuses but by the fact that all 
evidence is preconditioned on the existence of an observer to “have” the evidence and to 
build the instruments in the first place. Only quite recently have observation selection 
effects become the subject of systematic study. Observation selection effects are 
important in many scientific areas, including cosmology and parts of evolution theory, 
thermodynamics, the foundations of quantum theory, and traffic analysis. There are also 
interesting applications to the search for extraterrestrial life and questions such as 
whether we might be living in a computer simulation created by an advanced civilization 
[1]. 
 Observation selection theory owes a large debt to Brandon Carter, a theoretical 
physicist who wrote several seminal papers on the subject, the first one published in 1974 
[2-5]. Although there were many precursors, one could fairly characterize Carter as the 
father of observation selection theory – or “anthropic reasoning” as the field is also 
known. Carter coined the “weak” and the “strong anthropic principle”, intending them to 
express injunctions to take observation selection effects into account. But while Carter 
knew how to apply his principles to good effect, his explanations of the methodology 
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they were meant to embody were less than perfectly clear. The meaning of the anthropic 
principles was further obscured by some later interpreters, who bestowed them with 
additional content that had nothing to do with observation selection effects. This 
contraband content, which was often of a speculative, metaphysical, or teleological 
nature, caused “ anthropic”  reasoning to fall into disrepute. Only recently has this trend 
been reversed. 
 Since Carter’s contributions, considerable effort has been put into the working out 
of the applications of anthropic principles, especially as they pertain to cosmological 
fine-tuning. There have also been many philosophical investigations into the foundations 
of anthropic reasoning. These investigations have revealed several serious paradoxes, 
such as the Doomsday argument (which one may or may not regard as paradoxical) [6], 
the Sleeping Beauty problem [7] [8], and the Adam and Eve thought experiments [9]. It is 
still controversial what conclusions we should draw from the apparent fine-tuning of our 
universe, as well as whether and to what extent our universe really is fine-tuned, and even 
what it means to say that it is fine-tuned. 
 Developing a theory of observation selection effects that caters to legitimate 
scientific needs while sidestepping philosophical paradoxes is a non-trivial challenge. In 
my recent book Anthropic Bias: Observation Selection Effects in Science and Philosophy, 
I presented the first mathematically explicit general observation selection theory and 
explored some of its implications. 
 Before sketching some of the basic elements of this theory and discussing how it 
pertains to the multiverse hypothesis, let us briefly consider some of the difficulties that 
confront attempts to create a method for dealing with observation selection effects. 
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The anthropic principles that Carter proposed, even setting aside the inadequacies in their 
formulation, were insufficiently strong for many scientific applications. A particularly 
serious shortcoming is that they were not probabilistic. 

Carter’s principles enable us to deal with some straightforward cases. Consider a 
simple theory that says that there are 100 universes, and that 90 of these are lifeless and 
10 contain observers. What does such a theory predict that we should observe? Clearly 
not a lifeless universe. Since lifeless universes contain no observers, an observation 
selection effect, enunciated by the strong anthropic principle, precludes them from being 
observed. So although the theory claims that the majority of universes are lifeless, it 
nevertheless predicts that we should observe one of the atypical ones that contain 
observers. 

Now take a slightly more complicated case. Suppose a theory says that there are 
100 universes of the following description: 
 

90 type-A universes, which are lifeless 
9 type-B universes, which contain one million observers each 
1 type-C universe, which contains one billion observers 

 
What does this theory predict that we should observe? (We need to know the 

answer to this question in order to determine whether it is confirmed or disconfirmed by 
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our observations.) As before, an obvious observation selection effect precludes type-A 
universes from being observed, so the theory does not predict that we should observe one 
of those. But what about type-B and type-C universes? It is logically compatible with the 
theory that we should be observing a universe of either of these kinds. However, 
probabilistically it is more likely, conditional on the theory, that we should observe the 
type-C universe, because that’ s what the theory says that over 99% of all observers 
observe. Finding yourself in a type-C universe would in many cases tend to confirm such 
a theory, to at least some degree, compared with other theories that imply that most 
observers live in type-A or type-B universes. 

To get this result, we must introduce a probabilistic strengthening of the anthropic 
principle along the lines of what I have called the Self-Sampling Assumption [8, 10, 11]: 
 

(SSA) One should reason as if one were a random sample from the set of all 
observers in one’ s reference class.1 

 
With the help of SSA, we can calculate the conditional probabilities of us making a 
particular observation given one theory or another, by comparing what fraction of the 
observers in our reference class would be making such observations according to the 
competing theories. 
 What SSA does is enable us to take indexical information into account. Consider 
the following two evidence statements concerning the cosmic microwave background 
radiation (CMB): 
 

E: An observation of CMB = 2.7K is made. 
E*: We make an observation of CMB = 2.7K. 

 
Note that E* implies E, but not vice versa. E*, which includes a piece of indexical 
information, is logically stronger than E. It is consequently E* that dictates what we 
should believe in case these different evidence statements lead to different conclusions. 
This follows from the principle that all relevant information should be taken into account. 
 Let us examine a case where it is necessary to use E* rather than E [18]. Consider 
two rival theories about the local temperature of CMB. Let T1 be the theory we actually 
hold, claiming that CMB = 2.7K. Let T2 say that CMB = 3.1K. Now, suppose that the 
universe is infinitely large and contains an infinite number of stochastic processes of 
suitable kinds, such as radiating black holes. If for each such random process there is a 
finite, non-zero probability that it will produce an observer in any particular brain state 
(subjectively making an observation e), then, because there are infinitely many 
independent “ trials” , the probability, for any given observation e, that e will be made by 
some observer somewhere in the universe is equal to 1. Let B be the proposition that this 
is the case. We might wonder how we could possibly test a conjunction like T1&B, or 
T2&B. For whatever observation e we make, both these conjunctions predict equally well 
(with probability 1) that e should be made. According to Bayes’ s theorem, this entails 
that conditionalizing on e being made will not affect the probability of T1&B, or of T2&B. 
And yet it is obvious that the observations we have actually made support T1&B over 

                                                 
1 Related principles have also been explored in e.g. [12-15]; see also [16, 17] 
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T2&B, for, needless to say, it is because of our observations that we believe that CMB = 
2.7K and not 3.1K. 
 This problem is solved by going to the stronger evidence statement E* and 
applying SSA. For any reasonable choice of reference class, T1&B implies that a much 
larger fraction of all observers in that class should observe CMB = 2.7K than CMB = 
3.1K, than does T2&B. (According to T1&B, all normal observers observe CMB = 2.7K, 
while on T2&B only some exceptional black-hole-emitted observers, or those who suffer 
from rare illusions, observe CMB = 2.7K.) Given these facts, SSA implies: 
 

P(E* | T1&B) >> P(E* | T2&B)  (1) 
 
From (1) it is then easy to show that our actual evidence E* does indeed give us reason to 
believe in T1&B rather than T2&B. In other words, SSA makes it possible for us to know 
that CMB = 2.7. 
 

 
 For the moment we are setting aside the problem of exactly how the reference 
class is to be defined. In the above example, any reference class definition satisfying 
some very weak constraints would do the trick. To keep things simple, we also ignore the 
problem of how to generalize SSA to deal with infinite domains. Strictly speaking, such 
an extension, which might involve focusing on densities rather than sets of observers, 
would be necessary to handle the present example; but it would add complications that 
would distract from basic principles. 
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So far, so good. SSA can derive additional support from various thought experiments, 
and it can be applied to a number of scientific problems where it yields results that are 
less obvious but nevertheless valid. 

Indexical 
information 

Non-indexical 
information 
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Figure 1. Observation selection theory is a complement to standard statistics, 
needed to handle cases where either the evidence or the hypothesis includes 
indexical information. 
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 Unfortunately, if we use SSA with the universal reference class, the one 
consisting of all intelligent observers, we encounter paradoxes. One of these is the 
notorious Doomsday argument, which purports to show that we have systematically 
underestimated the probability that our species will go extinct soon. The basic idea 
behind this argument is that our position in the sequence of all humans that will ever have 
lived (roughly number 60 billion) would be much more probable if the total number of 
humans is, say, 200 billion rather than 200 trillion. Once we take into account this 
difference in the conditional probability of our observed birth rank, the argument goes, 
hypotheses that imply that very many humans are yet to be born are seen to be much less 
probable than we would have thought if we only considered the ordinary evidence (about 
the risk of germ warfare, nuclear was, meteor strikes, destructive nanotechnology etc.) 
The prospects of our descendants ever colonizing the galaxy would be truly dismal, as 
this would make our own place in human history radically atypical. 
 The most common initial reaction to the Doomsday argument is that it must be 
wrong; moreover, that it is wrong for some obvious reason. Yet when it comes to 
explaining why it is wrong, it turns out that there are almost as many explanations as 
there are people who disbelieve the Doomsday arguments. And the explanations tend to 
be mutually inconsistent. On closer inspection, all these objections, which allege some 
trivial fallacy, turn out to be themselves mistaken [6, 8, 19]. 
 Nevertheless, the Doomsday argument has some backers, and while the way in 
which it aims to derive its conclusion is definitely counterintuitive, it may not quite 
qualify as a paradox. It is therefore useful to consider the following thought experiment 
[9], which has a structure similar to the Doomsday argument but yields a conclusion that 
is even harder to accept. 
 

Serpent’s Advice. Eve and Adam, the first two humans, knew that if they gratified 
their flesh, Eve might bear a child, and that if she did, they would both be 
expelled from Eden and go on to spawn billions of progeny that would fill the 
Earth with misery. One day a serpent approached the couple and spoke thus: 
“ Pssssst! If you take each other in carnal embrace, then either Eve will have a 
child or she won’ t. If she has a child, you will have been among the first two out 
of billions of people. Your conditional probability of having such early positions 
in the human species given this hypothesis is extremely small. If, one the other 
hand, Eve does not become pregnant then the conditional probability, given this, 
of you being among the first two humans is equal to one. By Bayes’ s theorem, the 
risk that she shall bear a child is less than one in a billion. Therefore, my dear 
friends, step to it and worry not about the consequences!”  

 
It is easy to verify that, if we apply SSA to the universal reference class, the 

serpent’ s mathematics is watertight. Yet surely it would be irrational for Eve to conclude 
that the risk of her becoming pregnant is negligible. 

One can try to revise SSA in various ways or to impose stringent conditions on its 
applicability. However, it is difficult to find a principle that satisfies all constraints that an 
observation selection theory ought to satisfy – a principle that both serves legitimate 
scientific needs and at the same time is probabilistically coherent and paradox-free. Here 
we lack the space to elaborate on the multitude of such theory constraints. It is easy 



 6

enough to formulate a theory that passes a few of these tests but it is hard to find one that 
survives them all. 
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The solution, in my view, begins with the realization that the problem with SSA is not 
that it is too strong but that it isn’ t strong enough. SSA tells you to take into account one 
kind of indexical information: information about which observer you are. But you have 
more indexical information than that. You also know which temporal segment of that 
observer, which “ observer-moment” , you currently are. We can formulate a Strong Self-
Sampling Assumption that takes this information into account [8]: 
 

(SSSA) Each observer-moment should reason as if it were randomly selected 
from the class of all observer-moments in its reference class. 

 
Arguments can be given for why SSSA expresses a correct way of reasoning about a 
number of cases. 

To cut a long story short, we find that the added analytical firepower provided by 
SSSA makes it possible to relativize the reference class, so that different observer-
moments of the same observer may place themselves in different reference classes 
without that observer being probabilistically incoherent over time. This relativization of 
the reference class in turn makes it possible coherently to reject the serpent’ s advice to 
Eve while still enabling legitimate scientific inferences to go through. Recall, for 
instance, the case we considered above, about our observation of CMB = 2.7K supporting 
the theory that this is the actual local temperature of CMB even when evaluated in the 
context of a cosmological theory that asserts that all possible human observations are 
made. This result would be obtained almost independently of how we defined the 
reference class. So long as the reference class satisfies some very weak constraints, the 
inference works. This “ robustness”  of an inference under different definitions of the 
reference class turns out to be a hallmark of those applications of anthropic reasoning that 
are scientifically respectable. By contrast, the applications that yield paradoxes rely on 
specific definitions of the reference class and collapses when a different reference class 
chosen. The serpent’ s reasoning, for example, works only if we place the observer-
moments of Adam and Eve prior to sinning in the same reference class as the observer-
moments of those (very different) observers that may come to exist centuries later as a 
result of the first couple’ s moral lapse. The very fact that this absurd consequence would 
follow from selecting such a reference class gives us a good reason to use another 
reference class instead. 

The idea expressed vaguely in SSSA can be formalized into a precise principle 
that specifies the evidential bearing of a body of evidence e on a hypothesis h. I have 
dubbed this the Observation Equation [8]: 
 

∑
Ω∩Ω∈ Ω∩Ω

=
eh

w
wP

ehP
σ σα

σα
α γ |)(|

)(1
)|(  
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Here, α  is the observer-moment whose subjective probability function is αP . hΩ  is the 
class of all possible observer-moments about whom h is true; eΩ  is the class of all 
possible observer-moments about whom e is true; αΩ  is the class of all observer-
moments that α  places in the same reference class as herself; αw  is the possible world in 
which α  is located; and γ  is a normalization constant. The quantity in the denominator 
is the cardinality of the intersection of two classes, αΩ  and )( σwΩ , the latter being the 
class of all observer-moments that exist in the possible world σw . 

The Observation Equation can be generalized to allow for different observer-
moments within the reference class having different weights )(σµ . This option is of 
particular relevance in the context of the many-worlds version of quantum mechanics, 
where the weight of an observer-moment would be proportional to the amplitude squared 
of the branch of the universal wavefunction where that observer-moment lives. 

The Observation Equation expresses the core of a quite general methodological 
principle. Two of its features deserve to be highlighted here. The first is that by dividing 
the terms of the sum by the denominator, we are factoring out the fact that some possible 
worlds contain more observer-moments than do others. If one omitted this operation, one 
would in effect assign a higher prior probability to possible worlds that contain a greater 
number of observers (or more long-lived observers). This would be equivalent to 
accepting the Self-Indication Assumption, which prescribes an a priori bias towards 
worlds that have a greater population. But although the Self-Indication Assumption has 
its defenders (e.g. [20]), it leads to paradoxical consequences, as shown by the 
Presumptuous Philosopher thought experiment [8]. In particular, it implies that we should 
assign probability 1 to the cosmos being infinite, even if we had strong empirical 
evidence that it was finite; and this implication is very hard to accept. 

A second feature to highlight is that the only possible observer-moments that are 
taken into account by an agent are those that the agent places in the same reference class 
as itself. Observer-moments that are outside this reference class are treated, in a certain 
sense, as if they were rocks or other lifeless objects. Thus, the question of how to define 
“ observer”  is replaced with the question of how an agent should select an appropriate 
reference class for a particular application. This reference class will often be a proper 
subset of intelligent observers or observer-moments. 
 Bounds can be established on permissible definitions of the reference class. For 
example, if we reject the serpent’ s advice, we must not use the universal reference class 
that places all observer-moments in the same reference class. If we want to conclude on 
the basis of our evidence that CMB = 2.7K, we must not use the minimal reference class 
that includes only subjectively indistinguishable observer-moments, for such a reference 
class would block that inference. 

It is an open question whether additional constraints can be found that would 
always guarantee the selection of a unique reference class for all observer-moments or 
whether there might instead, as seems quite likely, be an unavoidable element of 
subjective judgment in the choice of reference class. This latter contingency would 
parallel the widely acknowledged element of subjectivity inherent in many other kinds of 
scientific judgments that are made on the basis of limited or ambiguous evidence. 
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One immediate implication of observation selection theory for cosmological fine-tuning 
is that it allays worries that anthropic reasoning is fundamentally unsound and inevitably 
plagued by paradoxes. It thereby puts the multiverse explanation of fine-tuning on a more 
secure methodological footing. 

A multiverse theory can potentially explain cosmological fine-tuning, provided 
several conditions are met. To begin with, the theory must assert the existence of an 
ensemble of physically real universes. The universes in this ensemble would have to 
differ from one another with respect to the values of the fine-tuned parameters, according 
to a suitably broad distribution. If observers can exist only in those universes in which the 
relevant parameters take on the observed fine-tuned values (or if the theory at least 
implies that a large portion of all observers are likely to live in such universes), then an 
observation selection effect can be invoked to explain why we observe a fine-tuned 
universe. Moreover, in order for the explanation to be completely satisfactory, this 
postulated multiverse should not itself be significantly fine-tuned. Otherwise the 
explanatory problem would merely have been postponed; for we would then have to ask, 
how come the multiverse is fine-tuned? A multiverse theory meeting these conditions 
could give a relatively high conditional probability to our observing a fine-tuned 
universe. It would thereby gain a measure of evidential support from the finding that our 
universe is fine-tuned. Such a theory could also help explain why we find ourselves in a 
fine-tuned universe, but to do in this, the theory would also have to meet the ordinary 
crew of desiderata – it would have to be physically plausible, fit the evidence, be 
relatively simple and non-gerrymandered, and so forth. Determining whether this 
potential anthropic explanation of fine-tuning actually succeeds requires a lot of detailed 
work in empirical cosmology. 

One may wonder whether these conclusions depend on fine-tuning per se or 
whether they follow directly from the generic methodological injunction that we should, 
other things being equal, prefer simpler theories with fewer free variables to more 
complex theories that require a larger number of independent stipulations to fix their 
parameters (Occam’ s razor). In other words, how does the fact that life would not have 
existed if the constants of our universe had been slightly different play a role in making 
fine-tuning cry out for an explanation and in suggesting a multiverse theory as the 
remedy? 

Observation selection theory helps us answer these questions. It is not just that all 
single-universe theories in the offing would seem to require delicate handpicking of lots 
of independent variable-values that would make such theories unsatisfactory: the fact that 
life would not otherwise have existed adds to the support for a multiverse theory. And 
how does that fact do this? By making the anthropic multiverse explanation possible. A 
simple multiverse theory could potentially give a high conditional probability to us 
observing the kind of universe we do because it says that only that kind of universe, 
among all the universes in a multiverse, would be observed (or at least, that it would be 
observed by a disproportionately large fraction of the observers). The observation 
selection effect operating on the fact of fine-tuning concentrates the conditional 
probability on us observing a universe like the actual one. 
 Further, observation selection theory enables us to answer the question of how big 
a multiverse has to be in order to explain our evidence. The upshot is that bigger is not 
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always better [8]. The postulated multiverse would have to be large and varied enough to 
make it probable that some universe like ours should exist. Once this objective is reached, 
there is no additional anthropic ground for thinking that a theory that postulates an even 
bigger ensemble of universes is therefore, other things equal, more probable. The choice 
between two multiverse theories that both give a high probability to a fine-tuned universe 
like ours existing must be made on other grounds, such as simplicity or how well they fit 
with the rest of physics. 
 A multiverse would not have to be large enough to make it probable that a 
universe exactly like ours should exist. A multiverse theory that entails such a huge 
cosmos that one would expect a universe exactly like ours to be included in it, does not 
have an automatic advantage over a more frugal competitor. Such an advantage would 
have to be earned, for example by being a simpler theory. There is, as we noted earlier, 
no general reason for assigning a higher probability to theories that entail that there is a 
greater number of observers in our reference class. Increasing the membership in our 
reference class might make it more likely that the reference class should contain some 
observer who is making exactly the observations that we are making but it would also 
make it more surprising that we should happen to be that particular observer rather than 
one of the others in the reference class. The net effect of these two considerations is to 
cancel each other out. All the observation selection effect does is concentrate conditional 
probability on the observations represented by the observer-moments in our reference 
class so that, metaphorically speaking, we can postulate stuff outside the reference class 
“ for free” . Postulating additional stuff within the reference class is not gratis in the same 
way but would have to be justified on independent grounds. 

It is, consequently, in major part an empirical question whether a multiverse 
theory is more likely than a single-universe theory, and whether a larger multiverse is 
more plausible than a smaller one. Anthropic considerations are an essential part of the 
methodology for addressing these questions, but the answers will depend on the data. 
 In its current stage of development, observation selection theory falls silent on 
problems where the solution depends sensitively on the choice of reference class. For 
example, suppose a theory implies that the overwhelming majority of all observers that 
exist are of a very different kind from us. Should these radically different observers be in 
our reference class? If we do place them in our reference class (or more precisely, if we 
place their observer-moments in the same reference class as our own current observer-
moments), then a theory that implies that the overwhelming majority of all observers are 
of that different kind would be contraindicated by our evidence, roughly because 
according to that theory we should have thought it highly unlikely that we should have 
found ourselves to be the kind of observer that we are rather than a more typical kind of 
observer. That is to say, such a theory would be disconfirmed compared to an equally 
simple theory that implied that a much larger fraction of all observers would be of our 
kind. Yet if we exclude the other kind of observer from our reference class, then our 
evidence would not count against the theory. In a case like this, the choice of reference 
class makes a difference to our interpretation of our evidence. 

Further developments of observation selection theory would be needed to 
determine whether there is a unique objectively correct way of resolving such cases. In 
the meantime, it is a virtue of the methodological framework encapsulated by the 
Observation Equation that it brings this indeterminacy into the open and does not 
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surreptitiously privilege one particular reference class over potentially equally defensible 
alternatives. 
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Preprints and background material on observation selection theory can be found 
at www.anthropic-principle.com 
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